Role of mitochondrial electron transport complex I in coenzyme Q1 reduction by intact pulmonary arterial endothelial cells and the effect of hyperoxia.

نویسندگان

  • Marilyn P Merker
  • Said H Audi
  • Brian J Lindemer
  • Gary S Krenz
  • Robert D Bongard
چکیده

The objective was to determine the impact of intact normoxic and hyperoxia-exposed (95% O(2) for 48 h) bovine pulmonary arterial endothelial cells in culture on the redox status of the coenzyme Q(10) homolog coenzyme Q(1) (CoQ(1)). When CoQ(1) (50 microM) was incubated with the cells for 30 min, its concentration in the medium decreased over time, reaching a lower level for normoxic than hyperoxia-exposed cells. The decreases in CoQ(1) concentration were associated with generation of CoQ(1) hydroquinone (CoQ(1)H(2)), wherein 3.4 times more CoQ(1)H(2) was produced in the normoxic than hyperoxia-exposed cell medium (8.2 +/- 0.3 and 2.4 +/- 0.4 microM, means +/- SE, respectively) after 30 min. The maximum CoQ(1) reduction rate for the hyperoxia-exposed cells, measured using the cell membrane-impermeant redox indicator potassium ferricyanide, was about one-half that of normoxic cells (11.4 and 24.1 nmol x min(-1) x mg(-1) cell protein, respectively). The mitochondrial electron transport complex I inhibitor rotenone decreased the CoQ(1) reduction rate by 85% in the normoxic cells and 44% in the hyperoxia-exposed cells. There was little or no inhibitory effect of NAD(P)H:quinone oxidoreductase 1 (NQO1) inhibitors on CoQ(1) reduction. Intact cell oxygen consumption rates and complex I activities in mitochondria-enriched fractions were also lower for hyperoxia-exposed than normoxic cells. The implication is that intact pulmonary endothelial cells influence the redox status of CoQ(1) via complex I-mediated reduction to CoQ(1)H(2), which appears in the extracellular medium, and that the hyperoxic exposure decreases the overall CoQ(1) reduction capacity via a depression in complex I activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Function of mitochondrial complex-I and -IV in normal human and Parkinson's disease cybrids

Mitochondrial dysfunction has been implicated in the dopaminergic neurodegeneration, which characterizes Parkinson’s disease (PD). The activities of mitochondrial complexes I and IV were found to be reduced in the brains of PD patients (n = 4) as compared to age-matched controls (n = 4). This is tested in SH-SY5Y cell lines, transformed Rho0 cells, and in normal and PD cybrid cell lines. Cybrid...

متن کامل

Function of mitochondrial complex-I and -IV in normal human and Parkinson's disease cybrids

Mitochondrial dysfunction has been implicated in the dopaminergic neurodegeneration, which characterizes Parkinson’s disease (PD). The activities of mitochondrial complexes I and IV were found to be reduced in the brains of PD patients (n = 4) as compared to age-matched controls (n = 4). This is tested in SH-SY5Y cell lines, transformed Rho0 cells, and in normal and PD cybrid cell lines. Cybrid...

متن کامل

Influence of pulmonary arterial endothelial cells on quinone redox status: effect of hyperoxia-induced NAD(P)H:quinone oxidoreductase 1.

The objective of this study was to examine the impact of chronic hyperoxic exposure (95% O2 for 48 h) on intact bovine pulmonary arterial endothelial cell redox metabolism of 2,3,5,6-tetramethyl-1,4-benzoquinone (duroquinone, DQ). DQ or durohydroquinone (DQH2) was added to normoxic or hyperoxia-exposed cells in air-saturated medium, and the medium DQ concentrations were measured over 30 min. DQ...

متن کامل

Coenzyme Q1 redox metabolism during passage through the rat pulmonary circulation and the effect of hyperoxia.

The objective was to evaluate the pulmonary disposition of the ubiquinone homolog coenzyme Q(1) (CoQ(1)) on passage through lungs of normoxic (exposed to room air) and hyperoxic (exposed to 85% O(2) for 48 h) rats. CoQ(1) or its hydroquinone (CoQ(1)H(2)) was infused into the arterial inflow of isolated, perfused lungs, and the venous efflux rates of CoQ(1)H(2) and CoQ(1) were measured. CoQ(1)H(...

متن کامل

Depleted energy charge and increased pulmonary endothelial permeability induced by mitochondrial complex I inhibition are mitigated by coenzyme Q1 in the isolated perfused rat lung.

Mitochondrial dysfunction is associated with various forms of lung injury and disease that also involve alterations in pulmonary endothelial permeability, but the relationship, if any, between the two is not well understood. This question was addressed by perfusing isolated intact rat lung with a buffered physiological saline solution in the absence or presence of the mitochondrial complex I in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Lung cellular and molecular physiology

دوره 293 3  شماره 

صفحات  -

تاریخ انتشار 2007